
MATH 54 - HINTS TO HOMEWORK 10

PEYAM TABRIZIAN

Here are a couple of hints to Homework 10! Enjoy! :)

Note: If you’re running out of time (or if you absolutely hate harmonic oscillators), you
may skip the following problems:

(1) Section 4.7: You can skip the whole section!

(2) Section 4.9: Skip 1, 5, 7. Also, you don’t have to sketch the solution in 3.

Note: This only applies to my discussion sections, this doesn’t apply to the other sec-
tions! Also, the required problems in section 4.8 and 4.9 are important, so make sure to do
them!

SECTION 4.7: QUALITATIVE CONSIDERATIONS FOR VARIABLE-COEFFICIENT AND
NONLINEAR EQUATIONS

4.7.3. The book gives a physical explanation (which doesn’t make sense to me), so let
me give you a more mathematical explanation! Again, the word qualitative is important,
which means your answer doesn’t have to be rigorous at all!

Notice that y′′ = 6y2 ≥ 0. Hence the function y is concave up everywhere!

This says that y should look like the parabola y = x2. Moreover, since y(0) = −1 and
y′(0) = −1, we know that y starts at −1 and then starts to decrease. However, because y
is concave up and y is decreasing so quiclly, at some point y has to attain a minimum, and
then increase without bounds! (because as y is large, y′′ is large, so y increases faster and
faster)

Note that this agrees with the corresponding graph!

4.7.7. Ughhhh, sorry, but this is waaay too much physics! :(

4.7.12. This is just a matter of plugging in y2 into Legendre’s equation

4.7.13. Just compare the graphs with figures 4.13, 4.16, 4.17
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SECTION 4.8: A CLOSER LOOK AT FREE MECHANICAL VIBRATIONS

4.8.1, 4.8.9, 4.8.11. Use the equation my′′ + by′ + ky = 0, where:

(1) m is mass
(2) b is damping
(3) k is stiffness

Also, beware that the problems give you initial conditions!

4.8.1. m = 3, k = 48, b = 0. y(0) = 1
2 , y′(0) = 2.

The period is 2π
ω and the frequency is ω

2π , where ω is the term you find in the cos and
sin terms in your solution (for example, if your solution involves cos(2t), then ω = 2).

The amplitude is
√
C2

1 + C2
2 , where C1 and C2 are the two constants in your solution.

Finally, you need to find the first time t such that y(t) = 0.

4.8.3. Notice that your solution is different depending on whether 0 ≤ b < 8, b = 8, or
b > 8.

4.8.9. m = 2, k = 40, b = 8
√
5, y(0) = 10, y′(0) = 2. First find your solution, and then

solve y′(t) = 0 (this might involve tan−1, see example 3).

4.8.11. m = 1, k = 100, b = 0.2, y(0) = 0, y′(0) = 1. First find your solution, and then
solve y′(t) = 0 (this might involve tan−1, see example 3).

SECTION 4.9: A CLOSER LOOK AT FORCED MECHANICAL VIBRATIONS

4.9.1. Use your calculator!

4.9.3. Careful! Here one of the roots of the auxiliary equation, r = 3i coincides with
the term on the right-hand-side, 2 cos(3t), hence you have to guess yp(t) = At cos(3t) +
Bt sin(3t) (hence the term ‘resonance’)

4.9.5. First divide the equation by m, then find the homogeneous solution, and then find a
particular solution of the form yp(t) = A cos(γt)+B sin(γt) (no t factors because γ 6= ω).

The ‘trigonometric identity’ the book talks about is:

cos(A) cos(B) = −2 sin
(
A+B

2

)
sin

(
A−B

2

)
Finally, (c) looks long, but all you have to do is to sketch the curve in (b). Use your

calculator!
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4.9.7. This looks bad, but it’s not as horrible as you might think! First of all, y(t) =
y0(t) + yp(t) as usual, but here y0(t) is given by formulas (18) and (19) on page 509.
Moreover, yp stays exactly the same!

SECTION 6.1: BASIC THEORY OF LINEAR DIFFERENTIAL EQUATIONS

6.1.1, 6.1.3. First of all, make sure that the coefficient of y′′′ is equal to 1. Then look at
the domain of each term, including the inhomogeneous term (more precisely, the part of
the domain which contains the initial condition −2 resp. 5). Then the answer is just the
intersection of the domains you found!

6.1.9. cos2(x) + sin2(x) = 1, so linearly dependent

6.1.11. Use the Wronskian with x = 1

6.1.11. Use the Wronskian with x = 1

6.1.23. For example, for (a), we have:

L [2y1 − y2] = 2L [y1]− L [y2] = 2x sin(x)− (x2 + 1) = 2x sin(x)− x2 − 1

So 2y1 − y2 solves the equation for (a)

6.1.27. Either you can use the Wronskian with x = 0 (the matrix becomes a diagonal
matrix with (n, n)th term n), or use the following reasoning: If

a0 + a1x+ a2x
2 · · ·+ anx

n = 0

This means that for EVERY x, x is a zero of a0+a1x+a2x2 · · ·+anxn (by definition
of the zero function). However, this polynomial is of degree n, hence cannot have more
than n zeros unless a1 = a2 = · · · = an = 0, which we want!

SECTION 6.2: HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

6.2.1, 6.2.3, 6.2.5, 6.2.7, 6.2.9, 6.2.11, 6.2.13. The following fact might be useful:

Rational roots theorem: If a polynomial p has a zero of the form r = a
b , then a divides

the constant term of p and b divides the leading coefficient of p.

This helps you ‘guess’ a zero of p. Then use long division to factor out p.

6.2.15, 6.2.17. The reason this is written out in such a weird way is because the auxiliary
polynomial is easy to figure out! For example, in 6.2.15, the auxiliary polynomial is

(r − 1)2(r + 3)(r2 + 2r + 5)2.
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6.2.25. Suppose:

a0e
rx + a1xe

rx + · · ·+ am−1x
m−1erx = 0

Now cancel out the erx, and you get:

a0 + a1x+ · · ·+ am−1x
m−1 = 0

But 1, x, x2 · · · , xm−1 are linearly independent, so a0 = a1 = · · · am−1 = 0, which is
what we wanted!


